Джеймс Стюарт цитаты

Джеймс Стюарт фото

1   0

Джеймс Стюарт

Дата рождения: 20. Май 1908
Дата смерти: 2. Июль 1997

Джеймс Мэ́йтленд Стю́арт — американский киноактёр, лауреат премии «Оскар» за лучшую мужскую роль в картине «Филадельфийская история». Боевой лётчик, ветеран Второй мировой войны и войны во Вьетнаме, бригадный генерал.

Был знаменит прежде всего тем, что за полвека создал обширную галерею «маленьких людей» большой Америки, но помимо этого, благодаря своему широкому эмоциональному диапазону, оставил заметный след в огромном количестве жанров: комедиях, драмах, мелодрамах, детективах, биографических фильмах, триллерах, вестернах. Кроме того, известен своей не по-голливудски благопристойной репутацией вне экрана.

Современными киноведами считается одним из величайших актёров в истории.


„Happiness is not having what you want but wanting what you have. Счастье заключается не в обладании желаемым, а в желании того, что имеешь.“

„Fear is an insidious and deadly thing. It can warp judgment, freeze reflexes, breed mistakes. Worse, it's contagious.“


„It may sound corny, but what's wrong with wanting to fight for your country. Why are people reluctant to use the word patriotism?“

„Behind Calvary's cross is the throne of heaven.“

„I always told Hitch that it would have been better to put seats around the set and sell tickets.“

„You know, I just love Grace Kelly. Not because she was a princess, not because she was an actress, not because she was my friend, but because she was just about the nicest lady I ever met. Grace brought into my life as she brought into yours, a soft, warm light every time I saw her, and every time I saw her was a holiday of its own. No question, I’ll miss her, we’ll all miss her, God bless you, Princess Grace.“

„Notice that if, then and, whereas if
, then and.
(a) If is absolutely convergent, show that both of the
series and are convergent.
(b) If is conditionally convergent, show that both of the
series and are divergent.
44. Prove that if is a conditionally convergent series and
is any real number, then there is a rearrangement of
whose sum is. [Hints: Use the notation of Exercise 43.
an an

0 a
n
an
0
an an
0 an
0
an

an

an

a
n


an

an

a
n


an
r

an
r
Take just enough positive terms so that their sum is greater
than. Then add just enough negative terms so that the
cumulative sum is less than. Continue in this manner and use
Theorem 11.2.6. ]
45. Suppose the series is conditionally convergent.
(a) Prove that the series is divergent.
(b) Conditional convergence of is not enough to determine whether is convergent. Show this by giving an
example of a conditionally convergent series such that
converges and an example where diverges.
r an

r

an

n
2
an

an

nan

nan

nan
an

We now have several ways of testing a series for convergence“
Calculus: Early Transcendentals

„Never treat your audience as customers, always as partners.“

Подобные авторы