Джон Форбс Нэш цитаты

Джон Форбс Нэш фото
1   4

Джон Форбс Нэш

Дата рождения: 13. Июнь 1928
Дата смерти: 23. Май 2015

Реклама

Джон Форбс Нэш-младший — американский математик, работавший в области теории игр и дифференциальной геометрии. Лауреат Нобелевской премии по экономике 1994 года за «Анализ равновесия в теории некооперативных игр» . Известен широкой публике большей частью по биографической драме Рона Ховарда «Игры разума» о его математическом гении и борьбе с шизофренией.

Подобные авторы

Давид Гильберт фото
Давид Гильберт7
немецкий математик
Блез Паскаль фото
Блез Паскаль108
французский математик, физик, литератор и философ
Леонард Эйлер фото
Леонард Эйлер3
швейцарский, немецкий и российский математик
Годфри Харолд Харди фото
Годфри Харолд Харди1
английский математик
Жюль Анри Пуанкаре фото
Жюль Анри Пуанкаре19
французский математик, физик, астроном и философ
Бенедикт Камбербэтч фото
Бенедикт Камбербэтч31
британский актёр театра, кино и телевидения
Рассел Кроу фото
Рассел Кроу2
австралийский деятель искусств
Эрик Берн33
американский психолог и психиатр

Цитаты Джон Форбс Нэш

Реклама

„People are always selling the idea that people with mental illness are suffering. I think madness can be an escape. If things are not so good, you maybe want to imagine something better. In madness, I thought I was the most important person in the world.“

—  John Nash
As quoted in " A Brilliant Madness A Beautiful Madness http://www.pbs.org/wgbh/amex/nash/ (2002), PBS TV program; also cited in Doing Psychiatry Wrong: A Critical and Prescriptive Look at a Faltering Profession (2013) by René J. Muller, p. 62

Реклама
Реклама

„You don't have to be a mathematician to have a feel for numbers.“

—  John Nash
Context: You don't have to be a mathematician to have a feel for numbers. A movie, by the way, was made — sort of a small-scale offbeat movie — called Pi recently. I think it starts off with a big string of digits running across the screen, and then there are people who get concerned with various things, and in the end this Bible code idea comes up. And that ties in with numbers, so the relation to numbers is not necessarily scientific, and even when I was mentally disturbed, I had a lot of interest in numbers. Statement of 2006, partly cited in Stop Making Sense: Music from the Perspective of the Real (2015) by Scott Wilson, p. 117

„One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.“

—  John Nash
Context: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other. "Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->

„At the present time I seem to be thinking rationally again in the style that is characteristic of scientists.“

—  John Nash
Context: At the present time I seem to be thinking rationally again in the style that is characteristic of scientists. However this is not entirely a matter of joy as if someone returned from physical disability to good physical health. One aspect of this is that rationality of thought imposes a limit on a person's concept of his relation to the cosmos.

„Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.“

—  John Nash
Context: A less obvious type of application (of non-cooperative games) is to the study of. By a cooperative game we mean a situation involving a set of players, pure strategies, and payoffs as usual; but with the assumption that the players can and will collaborate as they do in the von Neumann and Morgenstern theory. This means the players may communicate and form coalitions which will be enforced by an umpire. It is unnecessarily restrictive, however, to assume any transferability or even comparability of the pay-offs [which should be in utility units] to different players. Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration. "Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951); as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel

Далее
Сегодня годовщина
Гейнц Гудериан фото
Гейнц Гудериан1
генерал-полковник армии нацистской Германии 1888 - 1954
Джозеф Аддисон фото
Джозеф Аддисон47
публицист, драматург, эстетик, политик и поэт 1672 - 1719
Другие 60 годовщин
Подобные авторы
Давид Гильберт фото
Давид Гильберт7
немецкий математик
Блез Паскаль фото
Блез Паскаль108
французский математик, физик, литератор и философ
Леонард Эйлер фото
Леонард Эйлер3
швейцарский, немецкий и российский математик
Годфри Харолд Харди фото
Годфри Харолд Харди1
английский математик